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From (A.3) and (A.4) we have the identity also wishes to thank Prof. Hashimoto of Osaka Electro-

Communication University for his helpful suswestions.

((’’/{P)= -(1/12) [d’((x’)’/@-x(y)) ’/2dbdj’j
bcb;l~

+(1/4)d(x’/p3)/@ [1]

- (1/2)?f( pn - q’)-3’2-(5/4)q’q’( pn - ?j’)-’/z. ~21

Using this identity, we can easily obtain the relation [3]

fl:’((’’/@)@( 1(12)2)
[4]

(A-l1, [fj]

From (A. 10) and (A. 11), and the limiting process k+co

and 8~0, we have the formula (7).
[7]
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The Electromagnetic Fields and the Phase
Constants of Dielectric Image Lines

KLAUS SOLBACH M INGO WOLFF

Abstract—A method is &acribed for the exact cafcnfatfon of the field

distributions and the phase constants of single and coupled dielectric image

fries of rectangdar cross section. Field d~tributions aad pfrase constants

cafcotated by this method are presented as weff as expxfmentaf results

from lines fabricated of paraf~m wax. The physicaf properties of the

electromagnetic fields and tke mode designation are discussed. The theory

is compared to approximate calculation methods known from the litera-

ture.

1. INTRODUCTION

D IELECTRIC IMAGE LINES are used as a basis of

integrated millimeter-wave circuits; it is hoped that

they will solve the problems which are known in connec-

tion with the application of microstrip lines in the millime-

ter-wave range. Therefore, more attention has been paid

to this kind of microwave guide in the last five years by

several authors; furthermore, the dielectric waveguide has

been proposed for application in the optical range. Papers
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was supported by the German Research Society under contract Wo
137/2.

The authors are with the Department of Electrical Engineering, Uni-
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by Goell [1] and Marcatili [2], which are based on in-

vestigations by Schlosser and Unger [3], shall be men-

tioned here. Goell and Marcatili have examined rectangu-

lar dielectric waveguides embedded in a second dielectric

material; Goell calculated the waveguides by expanding

the fields into cylindrical eigensolutions, whereas

Marcatili described an approximate solution which was

found to neglect the electromagnetic fields of certain field

regions. Toulios and Knox [4] in 1970 applied the solu-

tions of Marcatili to the problem of the dielectric image

line and showed the possible applications of the line for

millimeter wave techniques. Goell [1] only gave the solu-

tion of the field problem of one single line; Marcatili

described an approximate solution for two coupled lines,

which in a similar way has been used by Toulios and

Knox. A paper by Levige, Itoh, and Mittra [5] was also

based on Marcatili’s fundamental approximation method.

In this paper an exact solution is presented for the

calculation of the phase constant and the field distribu-

tions of one single or two coupled dielectric image lines of

rectangular cross section. The method presented can be
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used directly for the calculation of the dielectric image

line; it avoids the approximations made by Marcatili.

Furthermore, it makes it possible to discuss the physical

structure of the electromagnetic waves on single and cou-

pled image lines using the calculated field distributions,

and it makes it possible to compute the exact attenuation

constant due to dielectric losses in the lines (to be dis-

cussed in a future paper).

H. THE CMCULATION METHOD

In Fig. 1 the investigated waveguide is shown; it con-

sists of two coupled image lines of rectangular cross

section. The two lines of width 2W and height h are

separated by a distance c; they are mounted on a metal

ground plane. To define a proper eigenvalue problem, a

second metal plate of infinite conductivity is placed at a

distance d parallel to the ground plane. The influence of

this plate on the properties of the lines can be omitted by

choosing a large distance d.

Because of the symmetry of the structure, an even and

an odd mode can propagate on the coupled lines. The

symmetry plane between the lines is a magnetic wall in

the case of the even mode and an electric wall in the case

of the odd mode; it means that the structure to be

calculated can be reduced to that shown in Fig. 2, where

the plane x = b is a magnetic wall in the case of the even

mode and an electric wall in the case of the odd mode. If

the properties of the single uncoupled line are to be

calculated, the limitation b-m is considered; under this

condition the two lines shown in Fig. 1 no longer in-

fluence each other.

For the calculation of the electromagnetic fields which

are possible on a line as shown in Fig. 2, the field region is

subdivided into four partial regions (I–IV), and a com-

plete set of field solutions is derived for each subarea. It is

assumed that the dependence of the field components on

the z coordinate can be described by an exponential

function exp ( –j~z), ~ being the phase constant. The x

and y dependence of the fields in the regions II, III, and

IV are formulated using harmonic functions, so that the

boundary conditions are fulfilled on the defined

boundaries. In region I it is assumed that the x depen-

dence of the fields can be given by an exponential decay,

whereas the y dependence are described by a harmonic

function again. The following field potential functions

especially have been found for the four regions.

Region II

Il; = f {A, sin ( ~$~)x) +A~ cos ( llj?x)}
~=1

I

[plii~f3 Of
symmetry

Fig. 1. The cross section of the investigated coupled dielectric image
lines.
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x

=

u
Fig. 2. The cross sectional structure adopted for the calculation of
phase constant and field distribution of coupled dielectric image lines.

sin (fl$~)(y-d)). (4)

Region III

n;= f {C, sin ( (?$?x) + C; cos ( /3$?x) } cos ( D$$!y)
“=1

(5)

(6)

Region 1~ Electric Wall at x= b

11~= f Gv sin ( 13$?(x – b)) cos ( P$?Y) (7)
V=()

At= ~ Hw cos (Fjf(x-b)) sin (B~)). (8)
~=o

Region IV, Magnetic Wall at x = b

From the potential functions, the field components can
. COS ( ~$)(y – d)) (3) be derived using well-known methods (e.g., [7]). In
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(1)-(10) @~) and ~fl) (k= 1,2, 3,4) are the wavenumbers
for the TM~-modes of the regions I–IV, and ~j~) and ~~)

(k= 1,2, 3,4) are the corresponding wavenumbers of the
TEY-modes. The equations describe a complete solution

for the fields if n, m, N, and M become infinite. The

following relations hold:

Because of the boundary conditions at the metallic

walls, the following equations result:

p;;) = y , v=o, l,2,. .- (15)

p($) . m
d’

V=0,1,2,. . . (16)

@$;)= ~ , p=o, l,2,. . . . (18)

The boundary conditions in the plane y = h, – w < x < +

w between regions II and III can be fulfilled indepen-

dently of the remaining conditions. Furthermore, it is

possible to match the fields of the TE~-modes and the

TM~-modes as well as the fields which are even and odd

corresponding to the plane x = O, separately, on this

boundary. From the continuity condition for the tangen-

tial electric and magnetic field strength of the TM~-modes

and from a simple coefficient comparison, the following

relations result:

(/32-~:(2)iF
2“=

A relation identical to (19b) follows for the dependence

between A; and C;. From (19b) the following relation can

be derived

p$)

tan (8$) (h – d)) = ~ tan ( ~~)h). (20)

r

In the same manner, equivalent relations are found for the

TEY-modes

P$) = D;;) =& (21a)

Analogous equations result from the dependence be-

tween B: and D;.

Using the identities ~~~) = ~jj) and @~)= ~$), the wave-

numbers of the regions II and III can be found indepen-

dently of the remaining boundary conditions; they are

real or imaginary for the field region II, and they are

purely real for the fields in region III.

Using the solutions for the wavenumbers, the relations

between the amplitude coefficients Ap and C,, BP and DP,

as well as between A; and C;, B; and D; can be found

from (19b) and (21 b), thereby reducing the number of

unknown amplitude coefficients by the factor two.

If the boundary conditions in the plane x = – w (O< y
< d) and x = + w (O< y < d) are to be fulfilled, all modes

have to be taken into account. It means that from the

continuity condition for the EY and E= components as well

as for the HY and Hz components, the following relations

can be deduced:

&~fl)QJ@> m=l,2,. ..,l–l (23)

~B~)Sp(m), m=0,1,2,. ..,l–l (24)

m=0,1,2,. ..,l–l (25)

(B*+ ~~w)~$)Q.(m), m=l,2,. ..,l–l (26)
p=l

-$ &B~)Qp(rrs), m=l,2,. ..,l–l (27)
~=1

-$ PB~)Sp(m), m=0,1,2,. ..,l–l (28)
~=1

m=0,1,2,. ,., N–l (29)

$ (112+ ~~p)Bf)Qp(rn), m=l,2,. ..,l–l (30)
p=]
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{
1, ifm#O

Cm= 2, ifm=O.

P,(m), QP(m), ~(m), SP(m), and T.(m) are couPling

integrals, as they can be derived through the matching of

the fields in the boundaries (see Appendix I). The field

matching is achieved so that the mean-square deviation of

the field approximations can be made arbitrarily small.

The amplitude coefficients in (23)–(30) depend on the

originally used amplitude values AV, . . . , HP and
A;,... , D; as described in Appendix IL

The number of equations needed to calculate the eigen-

value problem ((23) – (30)) can be reduced if the

coefficients Em and F~ are calculated from (25) and (26)

and are inserted into (23) and (24). The same is true for

the coefficients G~ and kl~ in connection with (27)-(30).

If the phase constant of the waves on the dielectric image

line is to be computed, the zeros of the determinant of the

remaining set of equations must be determined. First, at a

given frequency the determinant is examined for its zero

crossings for ~ in the range of PO to /30~ by computing

its value in determined intervals and comparing it to the

preceding one.

The exact values of j? are calculated by starting an

iterative search for the zero inside the intervals of the zero

crossings by means of the Newton method. The search

can be conducted on the basis of the real part or the

imaginary part of the determinant since the determinant is

purely real or purely imaginary piecewise.

The calculation of the determinant was done by em-

ploying the Gauss-elimination method. Because in some

cases the value of the determinant exceeded the numerical

range of the computer, the range of the determinant was

reduced by suitable normalization of the coupling in-

tegrals Pv (m) to Tv(VI) before starting the search for zero

crossings.

From the phase co}stant ~, the wavenumbers, /lxV, ~xg,

~j~), ~#, B$), and /3~$ result. Using the solution of the
set of equations, the field potentials (1)–(1 O) for the four

field regions can be derived. From the field potentials the

field distributions of the electric and magnetic fields can

be calculated.

HI. NUMERICAL RESULTS

The eigenvalue equation of one single and two coupled

dielectric image lines has been evaluated using a Cyber 76

computer of Control Data Corporation.
In Fig. 10 the phase constant normalized to

kO= o= is shown for the three lowest order modes

on a single dielectric image line. The fundamental EH1,

mode has no cutoff frequency, whereas the phase con-

stants of the higher order modes do exist only for

frequencies higher than a cutoff frequency. At the cutoff

frequency ~ is equal to km Furthermore, a comparison

between the results of this theory and that given by

Marcatili [2] and Toulios and Knox [4] is shown in Fig,

10. The method of Marcatili or Toulios and Knox has

been adapted in order to make its results comparable to

the results calculated here.

In the field region between the upper side of the dielec-

tric guide and the metallic shielding, a hyperbolic function

is taken into account instead of the exponential function

in the original field description in [2] and [4], so that the

tangential electric field vanishes at the shielding plate.

The designation of the possible modes on the dielectric

image line used in this paper is based on the relationship

of the modes on the dielectric image line to those of a

simple dielectric slab guide: E (TM) modes having only

E=, EY, and HX components and H (TE) modes possessing

only H., ~Y, and EX components. Thus the modes of t’he
dielectric Image line are designated EH if the field

strengths E=, EY, and HX are superior to the field streng~hs

Hz, HY, and EX. Respectively, they are designated HE if

the contrary is true. In agreement with the mode descrip-

tion in [1], indices p and q are introduced to determine the

number of maximums of the EY components in region 1[11

in the x and y direction, respectively, In [2] and [4] it is

assumed that the EY and HX components are much larger

than all other field components, This assumption was the

basis of Marcatili’s approximation.

As can be shown by means of the theory described in

this paper, this assumption in general is not valid; the

assumption is applicable only to the fundamental modes

EH1 ~ (Fig. 3 and Fig. 4) or the EH1 ~. and EH11. in case

of coupled lines (see Fig. 7) of low permittivity lines

(e,s3) and arbitrary aspect ratio w/h. High permittivity

lines of very high or very low aspect ratio (degenerated

into dielectric slab or dielectric sheet waveguide) can a] so

be described well under the above assumption.

If the field distributions of the magnetic and electric

field strength of the EH1 ~ fundamental mode on a single

low permittivity dielectric image line are calculated, Fig. 3

and Fig. 4 result. Fig. 3 is valid in the case of a relatively

low frequency, and Fig. 4 is valid in the case of a

relatively high frequency. It can be seen clearly that a

remarkable difference exists in the field decay outside the

dielectric. For low frequencies a large part of the electro-

magnetic energy travels in the air region, whereas for

higher frequencies the energy is concentrated more and

more in the dielectric material. In the planes x = * w and

Y = ~ the normal component of the electric field strength
(EX for x= t w, E, for y= h) in agreement with the

boundary conditions is not continuous.
The field distribution of the dielectric image line of

rectangular cross section with w w h is similar to that of

the circular dielectric wire. The fundamental mode EJY1,

of the image line corresponds to the “dipole mode” EH11

of the circular dielectric waveguide. Both modes converge

into a plane wave for low frequencies (j% O). The next

two higher order modes of the image line with the indices

p, q= 2, and 1 (Fig. 5) correspond to the rotational sym-
metric modes TEIO and TMIO of the circular guide. The

HE modes of the image line at the same frequency have a

lower phase velocity than the EH modes, as is the case

with the TE and the TM modes of the circular dielectric

guide; the HE21-mode field characteristics are similar to

the characteristics of a transversal electric mode, whereas

the EHZ1 mode is similar to a transversal magnetic mode.

Modes with indices p,q=4, 1; 6, 1; 8, 1;. . . . in the same
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Fig. 3. Normalized calculated field distributions of the EH1 ~ mode on a
dielectric image line in a horizontal plane at y = 0.8h and in a vertical
plane at x= O.9W.wJ/h= 1, b/w-+ co, d/k-+co, B= 1.2, ~/~0= 1.1854,
and c,= 2.22.
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Fig. 4. Normalized calculated field distributions of the EH1, mode on a
dielectric image line in a horizontal plane at y = 0.8h and iu a vertical
plane at x =0.9w. w/h =1, b/w-+ co, d/h+cc, B= 3.0, fl/~O= 1.420,
and c,= 2.22.
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Fig. 5. Normalized calculated field distributions of the HE21 mode on a
figh permittivity dielectric image line in a horizontal plane at y = 0.8h
and in a vertical Diane at x= O.9W. w\h= 1, b/w-+ cc, d/h=xo,
B =2.0, /1/~0= 1.91~3, and c, = 10. ‘ ‘

manner correspond to the T~O, TM20; TE30, TM30;

TEao, TM@; . . . modes of the circular dielectric guide. All

other modes are essentially hybrid modes like the fun-

damental mode EH1 ~; under certain restrictions they

correspond to the remaining modes EH22, HE22,

EH31, HE31,, . . of the circular dielectric guide.

In Fig. 6 the field distribution of an image line of large

width w are shown. The electromagnetic field is con-

centrated for the greater part in the dielectric medium.

The fields correspond very closely to those of the dielec-

tric slab guide which supports TE~ and TM~ modes. The

fundamental mode TMO for low frequencies converges

into a plane wave; a TEO mode is not supported. As can

be seen from Fig. 6, the fundamental mode EH1 ~ of the

dielectric image line is nearly transversely magnetic. The

modes of the image line with indices p =1,2,3, ” .” and

~= 1 correspond to the TMP modes of the dielectric slab
guide. The modes with p= 1,2,3,. . . and q=2,3,4, - -.

may be divided into two groups with TE or TM character-

istics, respectively; they correspond to the TE or TM

modes of the dielectric slab guide and are called HEpq and

EHpq modes, respectively.
Analogous to the above discussion, dielectric image

guides of large height h can be compared to the dielectric

sheet; the restriction has to be made that only those

modes of the dielectric sheet which have no electric field

component in the z–x plane are compared to the modes

of the dielectric image line. These are the even and odd

TE and TM modes, of which only the T& mode has no
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Fig. 6. Normalized calculated field distributions of the EH1 ~ mode on a
flat dielectric imaze line in a horizontal dane at v = 0.8h and in a
vertical plane at ~ =0.9w. w/~ = 10, b/~+ce, d“/Jz+ce, B = 1.25,

B/BO= 1.3183, and c,=2.22.

cutoff frequency. For a very low aspect ratio w/h (w/h~

O), the fundamental mode EH1 ~ of the dielectric image

line converges into this mode. Besides analogous results to

those found by the comparison of the flat image Iine with

the dielectric slab guide are valid for the narrow image

line in correspondence to the dielectric sheet guide.

In Fig. 5 the field distributions of a HEZ1 mode on a

high permittivity image line (c, = 10) is shown. The step of

the normal electric field strength on the dielectric inter-

faces is very large.

In Fig. 7 the fields of the even mode of two coupled

image lines with w/h = 1 and b/w= 1.5 are plotted. The

Ey, E=, and HX components do not become zero in the

plane of symmetry, whereas the EX, HY, and Hz compo-

nents vanish; this is equivalent to a magnetic wall in the

plane of symmetry.

The calculated values of the phase constant of single

and coupled dielectric image lines are not only dependent

on the geometrical and electrical parameters of the lines

but also on the number N of the field modes which have

been taken into account in the calculation procedure. The

problem of relative convergence does not appear due to

the fact that the fields near the edges of the guide (x= &
w, y = h) remain finite. Furthermore, the adopted shield-

ing plate may have an influence on the transmission

properties of the line. A minimum value of height d which

is dependent on the frequency and the dielectric constant

can be found so that the error caused by the shielding is

negligibly small. As Fig. 8 and Fig. 9 show, the influence
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-11
+1-

E
Y

a-
-[ E +1 I

-1-

-11

l-T9-Hx
‘I-==-+-’y
-11

‘i---+HzHz
-11 x/u +

+
-1

+
-1

L“
-1

1---
-[

L
-1

—

(
+1

L
)_

+1

+1

—
+1

—
+1

L
f
L
\
P

+1

Fig. 7. Normalized calculated field distributions of the EH11. mode on
coupled dielectric image tines in a horizontal plane at y = 0.8h and in a
vertical plane at x =0.9w. wJ/h = 1, b/w= 1.5, d/h-+ co, B= 1.5, ~1/&
= 1.2756, and q = 2.22.

of the number of field modes on the computed results is

very small. For many applications, a solution which cmly

considers two field modes can be good enough. As a

general rule, it can be concluded that the height d may

become smaller with increasing frequency, and that the

number of field modes considered must become Ial”ger

with increasing height din order to reject the influences of

these values on the computed phase constant.

It is necessary that the number of field modes consid-

ered is much larger than the quotient d/h if the field

distributions are to be calculated, especially if the discon-

tinuities of the normal electric field components are tc) be

computed with satisfying accuracy. For example, if d/h=

5, N has to be at least 15 to get a satisfying field descrip-

tion.

In Figs. 10–14 the normalized phase constant ~/& is

shown versus the frequency ~ normalized to the cutoff

frequency of the first higher order mode (TEI) of a

dielectric slab guide, which is of the same height h iand

dielectric constant c, as the dielectric image line. As can

be seen from Figs. 10–14, the approximation given by

Toulios and Knox [4] in the case of rather low perznittivity

lines is quite good, whereas the solution described by
Marcatili [2] is not satisfying. The opposite is true for high

permittivity lines. This can also be concluded from the

comparison of Goell’s exact curves for single lines [1] with

both approximate theories [2] and [4].

Contrary to the approximate calculation methods, the

method described here provides two different solutions for
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Fig. 8. Calculated phase constant of the EH1 ~ mode on a dielectric
image line versus the height d of the shielding plate depending on the
number N of the field modes considered. w/h= 1, b/wJ-mo, B =2.0,
and q= 2.22.
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Fig. 11. Normalized phase constant of a flat dielectric image line versus
the normalized frequency B. @This theory,@ Marcatifi’s approxima-
tion [2], @approximation of Toulios and Knox [4].

distance d

-1––––––––––--+Fig. 9. Calculated phase constant of the HE21 mode on a dielectric
image line versus the height d of the shielding plate depending on the
number N of field modes considered. w/h= 1, b/w+ee, B = 2’.0, and
e,= 2.22.
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Fig. 12. Normalized phase constant of a high perrnittivity dielectric
image line versus the ‘normalized frequency B. @l%is theory, @
Marcatili’s approximation [2], @)approximation of Toulios and Knox
[4].
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can be stated that solutions exist which cannot be calcu-

lated using the approximate methods. Those modes which
are a solution to the theory of Toulios and Knox, are

approximated quite well by their method.

Fig. 10. Normalized phase constant of a dielectric image line versus the
normalized frequency B.@ This theory,@ Marcatili’s approxinnation
[2],@ approximation of Toulios and Knox [4].

certain sets of indices, for example, for p, q = 2, 1, the

EH21, and the HEZ1 modes. Only one of these solutions is

approximated by the approximate theories of Toulios,

Knox, and Marcatili.

In Fig. 11 the phase constant of a flat dielectric image

line is plotted; in this case the approximation after [4] is in

very good agreement with our method. This is true for the

fundamental mode as well as for the higher modes.

In Fig. 13 and Fig. 14 the normalized phase constants

of the even and the odd mode of two coupled low permit-

tivity dielectric image lines are shown. Even in this case it

IV. MEASUREMENT RESULTS

The theoretical results for field distributions as well as

for phase constants have been proven experimentally. The

experimental method and some measurement results of

field distributions have been described in [6]. In Fig. 15

and Fig. 16 the measured and calculated phase constants

are compared. The agreement between theory and experi-

ment is very good. Decisive discrepancies between theory

and experiment could be measured in no case. It can be

seen from Fig. 15 especially that the additional solution of



SOLBACH AND WOLFF: PHASE CONSTANTS OF DIELECTRIC IMAGE LINES

1.6

1.5

! 1.9

P/p.
1.3

1.2

1.1

I.zl

0 0.s 1.0 1.s 2.0

B= fLh~/co —

Fig. 13. Normalized phase constant of theeven modes on two coupled
dielectric image lines versus the normalized frequency B. @This the-
ory, @Mmcatili’s approximation [2], @approximation of Toulios and
Knox [4].
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Fig. 15. Normalised phase constant of a dielectric image line versus the
normalized frequency B.— This theory, + and * experimental
data from fines of height ~ = 4.1 mm.
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Fig. 14. Normalized phase constant of the odd modes on two coupled
dielectric image lines versus the normalized frequency B.@ This the-
ory, @ Marcatifi’s approximation [2], ~ approximation of Toulios and
Knox [4].

the EHZ1 mode could be measured very clearly. Therefore,

it results that the theory presented here can be accepted as

a reliable instrument to calculate the properties of the

dielectric image line exactly. Furthermore, because the

computing time needed for the calculation of one

frequency-dependent phase constant is small (t< 1s on a

Cyber 76), the method presented is efficient too.

APPENDIX I

Coupling Integrals

0 0.s I .5 2.0
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Fig. 16. Normalized phase constant of the even and odd mode on two
coupled dielectric image lines versus the normalized frequency
B. —This theory, * and + experimental data from lines of height
h= 2.2 mm.

l,(m) = Jdcos ( py(y - d)) cm (5”Y) @

f,(m) = ~hsin ( ~$j~) sin (~”y) @

i2(m) = J*cos ( p$;)y) Cos ( y “y) @

i,(m)= ~dsin (/3$) (y-d)) sin (~.y) @

i4(m)=Jdcos (p$)(y-d)) Cos (y”y) @.

P“ (n)= p&”=-AI* (m) + B$?~3(~)

Q,(m)= k;-’il(tn)+ 13(wz)

& (m)= ~rk:-”l~(tn) + I’l(m)
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s (n’z)= J!3g%pY2(n’t) + @;)i4(nz)
P

Tv (m)= k:-~Iz(nz) + Iq(m)

with

~os (~$)(h– ‘)) /6 and
kVC-A =

Cos ( /3$;%) r

sin ( ~j$). (h – d))
k~-ll=

sin (~-$).h) “

APPENDIX II

Amplitude Coefficients

@)=-E
m m

In Case of an Electric Wall at x = b

G:) = ~sin (@j!(w–b))Gm

H:) = – ~to~o sin (P4#(w– b))H~

G:) = ;aJCO UJS ( ~:~(w – b))G~

H:) = ~COS (~j~(w–b))ll~.

In Case of a Magnetic Wall at x = b

[1]

[2]

[3]

[4]

[5]

[6]

[7]

G:) = ~COs(Bi#(w– b))%

If#) = ;(LIPOCOS (~;$)(w – b))%

G$) = – ~acosin ( P$~(w – b))G~

H:) = ~ sin ( ~$fl(w – b))H~.
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