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From (A.3) and (A.4) we have the identity
(§"/8P)=—(1/12)[ () / (b=x(»)"")/ab* |

+(1/4)d(x /P°)/ &y
— (/20 (=) "= (5 /42 (p,—0?) "2

=p"

Using this identity, we can easily obtain the relation

[ epyd=—1/1)

yl

+0(9).

b=b

dZ( f yz“’)“s((x'f/(b—x(y))‘/z)dy)/dbz

I(b)+8

(A.11)

From (A.10) and (A.11), and the limiting process k—co
and §—0, we have the formula (7).
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The Electromagnetic Fields and the Phase
Constants of Dielectric Image Lines

KLAUS SOLBACH anp INGO WOLFF

Abstract—A method is described for the exact calculation of the field
distributions and the phase constants of single and coupled dielectric image
lines of rectangular cross section. Field distributions and phase constants
calculated by this method are presented as well as experimental results
from lines fabricated of paraffin wax. The physical properties of the
electromagnetic fields and the mode designation are discussed. The theory
is compared to approximate calculation methods known from the litera-
ture.

I. INTRODUCTION

IELECTRIC IMAGE LINES are used as a basis of

integrated millimeter-wave circuits; it is hoped that
they will solve the problems which are known in connec-
tion with the application of microstrip lines in the millime-
ter-wave range. Therefore, more attention has been paid
to this kind of microwave guide in the last five years by
several authors; furthermore, the dielectric waveguide has
been proposed for application in the optical range. Papers

Manuscript received January 3, 1977; revised June 10, 1977. This work
was supported by the German Research Society under contract Wo
137/2.

The authors are with the Department of Electrical Engineering, Uni-
versity of Duisburg, Duisburg, Germany.

by Goell [1] and Marcatili [2], which are based on in-
vestigations by Schlosser and Unger [3], shall be men-
tioned here. Goell and Marcatili have examined rectangu-
lar dielectric waveguides embedded in a second dielectric
material; Goell calculated the waveguides by expanding
the fields into cylindrical eigensolutions, whereas
Marcatili described an approximate solution which was
found to neglect the electromagnetic fields of certain field
regions. Toulios and Knox [4] in 1970 applied the solu-
tions of Marcatili to the problem of the dielectric image
line and showed the possible applications of the line for
millimeter wave techniques. Goell [1] only gave the solu-
tion of the field problem of one single line; Marcatili
described an approximate solution for two coupled lines,
which in a similar way has been used by Toulios and
Knox. A paper by Levige, Itoh, and Mittra [5] was also
based on Marcatili’s fundamental approximation method.

In this paper an exact solution is presented for the
calculation of the phase constant and the field distribu-
tions of one single or two coupled dielectric image lines of
rectangular cross section. The method presented can be

0018-9480/78 /0400-0266$00.75 ©1978 IEEE
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used directly for the calculation of the dielectric image
line; it avoids the approximations made by Marcatili.
Furthermore, it makes it possible to discuss the physical
structure of the electromagnetic waves on single and cou-
pled image lines using the calculated field distributions,
and it makes it possible to compute the exact attenuation
constant due to dielectric losses in the lines (to be dis-
cussed in a future paper).

II. THE CALCULATION METHOD

In Fig. 1 the investigated waveguide is shown; it con-
sists of two coupled image lines of rectangular cross
section. The two lines of width 2w and height % are
separated by a distance ¢; they are mounted on a metal
ground plane. To define a proper eigenvalue problem, a
second metal plate of infinite conductivity is placed at a
distance 4 parallel to the ground plane. The influence of
this plate on the properties of the lines can be omitted by
choosing a large distance d.

Because of the symmetry of the structure, an even and
an odd mode can propagate on the coupled lines. The
symmetry plane between the lines is a magnetic wall in
the case of the even mode and an electric wall in the case
of the odd mode; it means that the structure to be
calculated can be reduced to that shown in Fig. 2, where
the plane x = b is a magnetic wall in the case of the even
mode and an electric wall in the case of the odd mode. If
the properties of the single uncoupled line are to be
calculated, the limitation b—oo is considered; under this
condition the two lines shown in Fig. 1 no longer in-
fluence each other.

For the calculation of the electromagnetic fields which
are possible on a line as shown in Fig. 2, the field region is
subdivided into four partial regions (I-IV), and a com-
plete set of field solutions is derived for each subarea. It is
assumed that the dependence of the field components on
the z coordinate can be described by an exponential
function exp (—jBz), B being the phase constant. The x
and y dependences of the fields in the regions II, III, and
IV are formulated using harmonic functions, so that the
boundary conditions are fulfilled on the defined
boundaries. In region I it is assumed that the x depen-
dence of the fields can be given by an exponential decay,
whereas the y dependences are described by a harmonic
function again. The following field potential functions
especially have been found for the four regions.

Region I
= X E, exp (BY (x+w)) cos (By) (1)
p=0
A= F, exp (BL(x+w))sin (BLy). )
p=0
Region 11
= > {A,, sin ( BPx)+ A, cos (Bﬁ)x)}
r=1
~cos (B (v —d)) 3)
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Fig. 1. The cross section of the investigated coupled dielectric image
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Fig. 2. The cross sectional structure adopted for the calculation of
phase constant and field distribution of coupled dielectric image lines.
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A= 3 (B, cos (F@x)+ B, sin (£ 2x)}

p=1
sin (B (=) @
Region 111
M
= {C,, sin ( B5x)+ C; cos ( ,B)S?,)x)} cos (,Bﬁ)y)
v
()
M -~ \
A= {Dﬂ cos (B Dx)+ Dy sin (B (3)x)} sin ( 5 ).
p=1 ’
(6)
Region 1V, Electric Wall at x=05b
N
= 2 G,sin (8P (x—b)) cos (B5y) ™
r=0
N -~ -~
= EOHM cos (BP(x—b))sin(BDy).  (8)
p=
Region 1V, Magnetic Wall at x=>5b
N
I = 3 G, cos (B (x—b)) cos (BSDy) ®)
v=0
N ~
A= 3 H, sin(F®(x—b))sin(By). (10)
pn=0

From the potential functions, the field components can
be derived using well-known methods (e.g., [7]). In
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(D-(10) B® and B® (k=1,2,3,4) are the wavenumbers
for the TM?-modes of the regions I-IV, and 8® and §®
(k=1,2,3,4) are the corresponding wavenumbers of the
TE”-modes. The equations describe a complete solution
for the fields if n, m, N, and M become infinite. The
following relations hold:

K3=B2— B2+ B = p2- FO2+ F2 (1)
KR=B2+ B0+ P2 =2+ fP2+ P (12)

kg€r=ﬁZ+B£3)2+’3(3)2=B2+B'(3)2+B'}S3)2 (13)
k2=,82+,8£4)2 ,8(4)2 B2 :8 (4)2 3)54)2 (14)
K2=copow?,  w=2af

Because of the boundary conditions at the metallic
walls, the following equations result:

§p=%, r=0,1,2,- - (15)
W="7,  v=012- (16)
BH= ‘Z’, p=0,1,2,--- (17)
3(4) ‘U‘W p=0,1,2,--- (18)

The boundary conditions in the plane y=h, —w<x< +
w between regions IT and III can be fulfilled indepen-
dently of the remaining conditions. Furthermore, it is
possible to match the fields of the TE’-modes and the
TM”-modes as well as the fields which are even and odd
corresponding to the plane x=0, separately, on this
boundary. From the continuity condition for the tangen-
tial electric and magnetic field strength of the TM”-modes
and from a simple coefficient comparison, the following
relations result:

==

Xv

(19a)

BED—BOFD =3 AP, (m)
y=1
N
€ (BUED—BFD)y =3 B ADR (m)
g
(82— ,3“)2) Em >

(B2+B2)ALT, (m),
1

14

(B2~ BHEF, =
Bg(l)hlg(@H(l) = BA(3)P (m)

n( BRGP — BH,D) B AR, (m)

!
1Mz i Mx= i Mz

BB G = 3 (B BLMAPT, (m)
d
(B*+BED-SHD =
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A,BP sin (BP(y—d))=C,BY sin (BDh) (19b)
A, cos (BP(h—d))=¢C, cos ( BDh).
A relation identical to (19b) follows for the dependence

between 4, and C,. From (19b) the following relation can
be derived

3

By
,8(2) an ( BDh).

ryV

tan (BP(h—d))= (20)

In the same manner, equivalent relations are found for the
TE”-modes
BY=FQ=4,
B sin (A9 (h—d)) =D, sin () } atb)
BB cos (D (h—d )) DB cos ( B Dh)

(2

(21a)

)
tan ( 8 ).

P

tan ( S @ (h— d))— (22)
B

Analogous equations result from the dependences be-

tween B, and D,,.

Using the identities 32 = B and ,8 @ = f¢ &, the wave-
numbers of the regions II and III can be found indepen-
dently of the remaining boundary conditions; they are
real or imaginary for the field region II, and they are
purely real for the fields in region III.

Using the solutions for the wavenumbers, the relations
between the amplitude coefficients 4, and C,, B, and D,
as well as between 4; and C;, B, and D, can be found
from (19b) and (21b) thereby reducing the number of
unknown amplitude coefficients by the factor two.

If the boundary conditions in the plane x=—w (0< y
<d)and x=+w (0< y < d) are to be fulfilled, all modes
have to be taken into account. It means that from the
continuity condition for the E, and E, components as well
as for the H, and H, components, the following relations
can be deduced:

N
- 2 Bvxy‘B;fl)Qu(m)y m=152""3N_1 (23)
=1
”N
~ X BBAS,(m), m=0,12---,N—1 4)
u=1
m=0,1,2,--+,N—1 (25)
N ~
2 (B*+BL)BAQ,(m),  m=12---N=1 (26
n=1
N
2 Bqu(3)Q (m) m=1525 ;N_l (27)
=1
“N
- X BB®S,(m), m=0,1,2,---,N—1 28)
p=1
m=0,1,2 -1 (9
N ~
2 (B*+B3)BPQ,(m), m=12,---,N=1 (30)

we=1
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P,(m), Q,(m), R,(m), S,(m), and T,(m) are coupling
integrals, as they can be derived through the matching of
the fields in the boundaries (see Appendix I). The field
matching is achieved so that the mean-square deviation of
the field approximations can be made arbitrarily small.
The amplitude coefficients in (23)-(30) depend on the
originally used amplitude values 4,,---,H, and
A, -+, D, as described in Appendix II.

The number of equations needed to calculate the eigen-
value problem ((23)-(30)) can be reduced if the
coefficients E,, and F,, are calculated from (25) and (26)
and are inserted into (23) and (24). The same is true for
the coefficients G,, and H,, in connection with (27)~(30).
If the phase constant of the waves on the dielectric image
line is to be computed, the zeros of the determinant of the
remaining set of equations must be determined. First, at a
given frequency the determinant is examined for its zero
crossings for B in the range of B, to 8,Ve, by computing
its value in determined intervals and comparing it to the
preceding one.

The exact values of B8 are calculated by starting an
iterative search for the zero inside the intervals of the zero
crossings by means of the Newton method. The search
can be conducted on the basis of the real part or the
imaginary part of the determinant since the determinant is
purely real or purely imaginary piecewise.

The calculation of the determinant was done by em-
ploying the Gauss-elimination method. Because in some
cases the value of the determinant exceeded the numerical
range of the computer, the range of the determinant was
reduced by suitable normalization of the coupling in-
tegrals P,(m) to T,(m) before starting the search for zero
crossings.

From the phase constant 3, the wavenumbers, f,,, ,éxu,
BY, BY, BY, and P result. Using the solution of the
set of equations, the field potentials (1)—(10) for the four
field regions can be derived. From the field potentials the
field distributions of the electric and magnetic fields can
be calculated.

if m+#0
if m=0.

1.

The eigenvalue equation of one single and two coupled
dielectric image lines has been evaluated using a Cyber 76
computer of Control Data Corporation.

In Fig. 10 the phase constant normalized to
ko=wVeypy is shown for the three lowest order modes
on a single dielectric image line. The fundamental EH,,
mode has no cutoff frequency, whereas the phase con-
stants of the higher order modes do exist only for
frequencies higher than a cutoff frequency. At the cutoff
frequency B is equal to k,. Furthermore, a comparison
between the results of this theory and that given by
Marcatili [2] and Toulios and Knox [4] is shown in Fig,
10. The method of Marcatili or Toulios and Knox has
been adapted in order to make its results comparable to
the results calculated here.

NUMERICAL RESULTS
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In the field region between the upper side of the dielec-
tric guide and the metallic shielding, a hyperbolic function
is taken into account instead of the exponential function
in the original field description in [2] and [4], so that the
tangential electric field vanishes at the shielding plate.

The designation of the possible modes on the dielectric
image line used in this paper is based on the relationship
of the modes on the dielectric image line to those of a
simple dielectric slab guide: E(TM) modes having only
E,, E,, and H_ components and H (TE) modes possessing
only H,, H,, and E, components. Thus the modes of the
dielectric image line are designated EH if the field
strengths E,, E,, and H, are superior to the field strengths
H, H,, and E,. Respectively, they are designated HE if
the contrary is true. In agreement with the mode descrip-
tion in [1], indices p and ¢ are introduced to determine the
number of maximums of the E, components in region III
in the x and y direction, respectively. In [2] and [4] it is
assumed that the E, and H, components are much larger
than all other field components. This assumption was the
basis of Marcatili’s approximation.

As can be shown by means of the theory described in
this paper, this assumption in general is not valid; the
assumption is applicable only to the fundamental modes
EH,, (Fig. 3 and Fig. 4) or the EH,;, and EH,,, in case
of coupled lines (see Fig. 7) of low permittivity lines
(6,<<3) and arbitrary aspect ratio w/h. High permittivity
lines of very high or very low aspect ratio (degenerated
into dielectric slab or dielectric sheet waveguide) can also
be described well under the above assumption.

If the field distributions of the magnetic and electric
field strength of the EH,, fundamental mode on a single
low permittivity dielectric image line are calculated, Fig. 3
and Fig. 4 result. Fig. 3 is valid in the case of a relatively
low frequency, and Fig. 4 is valid in the case of a
relatively high frequency. It can be seen clearly that a
remarkable difference exists in the field decay outside the
dielectric. For low frequencies a large part of the electro-
magnetic energy travels in the air region, whereas for
higher frequencies the energy is concentrated more and
more in the dielectric material. In the planes x= *+w and
y=h the normal component of the electric field strength
(E, for x==+w, E, for y=h) in agreement with the
boundary conditions is not continuous.

The field distribution of the dielectric image line of
rectangular cross section with wah is similar to that of
the circular dielectric wire. The fundamental mode EH |,
of the image line corresponds to the “dipole mode” EH |,
of the circular dielectric waveguide. Both modes converge
into a plane wave for low frequencies (f—0). The next
two higher order modes of the image line with the indices
P, ¢=2, and 1 (Fig. 5) correspond to the rotational sym-
metric modes TE;, and TM,, of the circular guide. The
HE modes of the image line at the same frequency have a
lower phase velocity than the EH modes, as is the case
with the TE and the TM modes of the circular dielectric
guide; the HE,,-mode field characteristics are similar to
the characteristics of a transversal electric mode, whereas
the EH,, mode is similar to a transversal magnetic mode.
Modes with indices p,g=4,1;6,1;8,1;---, in the same
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manner correspond to the TE,j, TM,y TEs, TMs;
TE,, TM,; - - - modes of the circular dielectric guide. All
other modes are essentially hybrid modes like the fun-
damental mode EH,,; under certain restrictions they
correspond to the remaining modes EH,,, HE,,,
EH,,,HE,,,- - - of the circular dielectric guide.

In Fig. 6 the field distribution of an image line of large
width w are shown. The electromagnetic field is con-
centrated for the greater part in the dielectric medium.
The fields correspond very closely to those of the dielec-
tric slab guide which supports TE,, and TM,,, modes. The
fundamental mode TM, for low frequencies converges
into a plane wave; a TE, mode is not supported. As can
be seen from Fig. 6, the fundamental mode EH; of the
dielectric image line is nearly transversely magnetic. The
modes of the image line with indices p=1,2,3,--+ and
g=1 correspond to the TM, modes of the dielectric slab
guide. The modes with p=1,2,3,--- and ¢=2,3,4,---
may be divided into two groups with TE or TM character-
istics, respectively; they correspond to the TE or T™M
modes of the dielectric slab guide and are called HE,, and
EH,, modes, respectively.

Analogous to the above discussion, dielectric image
guides of large height /# can be compared to the dielectric
sheet; the restriction has to be made that only those
modes of the dielectric sheet which have no electric field
component in the z—x plane are compared to the modes
of the dielectric image line. These are the even and odd
TE and TM modes, of which only the TE, mode has no
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cutoff frequency. For a very low aspect ratiow/h (w/h—
0), the fundamental mode EH,, of the dielectric image
line converges into this mode. Besides analogous results to
those found by the comparison of the flat image line with
the dielectric slab guide are valid for the narrow image
line in correspondence to the dielectric sheet guide.

In Fig. S the field distributions of a HE,, mode on a
high permittivity image line (¢, = 10) is shown. The step of
the normal electric field strength on the dielectric inter-
faces is very large.

In Fig. 7 the fields of the even mode of two coupled
image lines with w/h=1 and b/w=1.5 are plotted. The
E, E,, and H, components do not become zero in the
plane of symmetry, whereas the E,, H,, and H, compo-
nents vanish; this is equivalent to a magnetic wall in the
plane of symmetry.

The calculated values of the phase constant of single
and coupled dielectric image lines are not only dependent
on the geometrical and electrical parameters of the lines
but also on the number N of the field modes which have
been taken into account in the calculation procedure. The
problem of relative convergence does not appear due to
the fact that the fields near the edges of the guide (x= =
w, y = h) remain finite. Furthermore, the adopted shield-
ing plate may have an influence on the transmission
properties of the line. A minimum value of height d which
is dependent on the frequency and the dielectric constant
can be found so that the error caused by the shielding is
negligibly small. As Fig. 8 and Fig. 9 show, the influence
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Fig. 7. Normalized calculated field distributions of the EH,,, mode on
coupled dielectric image lines in a horizontal plane at y=0.82 and in a
vertical plane at x=09w. w/h=1, b/w=15, d/h—o0, B=15, B/ B,
=1.2756, and ¢,=2.22.

of the number of field modes on the computed results is
very small. For many applications, a solution which only
considers two field modes can be good enough. As a
general rule, it can be concluded that the height d may
become smaller with increasing frequency, and that the
number of field modes considered must become larger
with increasing height 4 in order to reject the influences of
these values on the computed phase constant.

It is necessary that the number of field modes consid-
ered is much larger than the quotient d/h if the field
distributions are to be calculated, especially if the discon-
tinuities of the normal electric field components are to be
computed with satisfying accuracy. For example, if d/h=
5, N has to be at least 15 to get a satisfying field descrip-
tion.

In Figs. 10-14 the normalized phase constant B/f, is
shown versus the frequency f normalized to the cutoff
frequency of the first higher order mode (TE,) of a
dielectric slab guide, which is of the same height 4 and
dielectric constant ¢ as the dielectric image line. As can
be seen from Figs. 10-14, the approximation given by
Toulios and Knox [4] in the case of rather low permittivity
lines is quite good, whereas the solution described by
Marecatili [2] is not satisfying. The opposite is true for high
permittivity lines. This can also be concluded from the
comparison of Goell’s exact curves for single lines [1] with
both approximate theories [2] and [4].

Contrary to the approximate calculation methods, the
method described here provides two different solutions for
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number N of field modes considered. w/h=1, b/w—0, B=2.0, and
€,=222,

I.B

T w/h = 0.99

a 2.5 i.8 1.5 2.8 2.5 3.8

B=f4h €T /e, —=

Fig. 10. Normalized phase constant of a dielectric image line versus the
normalized frequency B.@This theory,@Marcatﬂi’s approximation
[2],©approximation of Toulios and Knox [4].

certain sets of indices, for example, for p,q=2,1, the
EH,,, and the HE,, modes. Only one of these solutions is
approximated by the approximate theories of Toulios,
Knox, and Marcatili.

In Fig. 11 the phase constant of a flat dielectric image
line is plotted; in this case the approximation after [4] is in
very good agreement with our method. This is true for the
fundamental mode as well as for the higher modes.

In Fig. 13 and Fig. 14 the normalized phase constants
of the even and the odd mode of two coupled low permit-
tivity dielectric image lines are shown. Even in this case it

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-26, NO. 4, APRIL 1978

|.B
.
? w/h = 5
|.L| b/w 00
B/Bo a/h -0
1.3
.2
1.1
1.8

1.A 1.5
B=t4hIE T Iy —=

Fig. 11. Normalized phase constant of a flat dielectric image line versus
the normalized frequency R@This theory,@MarcatiIi’s approxima-
tion [2],(3)approximation of Toulios and Knox [4].
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Fig. 12. Normalized phase constant of a high permittivity dielectric
image line versus the normalized frequency B.@This theory,@
Marcatili’s approximation [2],®approximation of Toulios and Knox

(4]

can be stated that solutions exist which cannot be calcu-
lated using the approximate methods. Those modes which
are a solution to the theory of Toulios and Knox, are
approximated quite well by their method.

IV. MEASUREMENT RESULTS

The theoretical results for field distributions as well as
for phase constants have been proven experimentally. The
experimental method and some measurement results of
field distributions have been described in [6]. In Fig. 15
and Fig. 16 the measured and calculated phase constants
are compared. The agreement between theory and experi-
ment is very good. Decisive discrepances between theory
and experiment could be measured in no case. It can be
seen from Fig. 15 especially that the additional solution of
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Fig. 13. Normalized phase constant of the even modes on two coupled
dielectric image lines versus the normalized frequency B.(DThis the-

ory,@Marcatlh’s approximation [2], @appronmatlon of Toulios and
Knox [4].
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Fig. 14. Normalized phase constant of the odd modes on two coupled
dielectric image lines versus the normalized frequency B.@ This the-
ory,(2)Marcatili’s approximation [2],(3)approximation of Toulios and
Knox [4].

the EH,, mode could be measured very clearly. Therefore,
it results that the theory presented here can be accepted as
a reliable instrument to calculate the properties of the
dielectric image line exactly. Furthermore, because the
computing time needed for the calculation of one
frequency-dependent phase constant is small (<1s on a
Cyber 76), the method presented is efficient too.

APPENDIX [

Coupling Integrals
h
= i (3) i mn,
I,(m) fo sin (By,,y) sin ( p y) dy
h
12(m)=f0 cos ( By ) cos (—’%Ey) dy

1(m)= [“sin (B2 (y =) sin (2 »)

273

.5 2.7 2.5 3.8

B=f4h T/, —=

Fig. 15. Normalized phase constant of a dielectric image line versus the
normalized frequency B. This theory, + and * experimental
data from lines of height A=4.1 mm.
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Fig. 16. Normalized phase constant of the even and odd mode on two
coupled dielectric image lines versus the normalized frequency
B. This theory, * and + experimental data from lines of height
h=22 mm.

1m)= [ cos (B (y=a) cos (" v)
I,(m)= [sin (B§) sin (% ) &
Iy(m)= ["cos (B) cos ("2F-3) &
fm)= [“sin (B (r— ) sin (7)o

T(m)= [“cos (BR(y—d)) cos (“») .
P, (m) = Bk A1, (m) + DLy (m)
0, (m)=
R, (m) = kST, (m) + I,(m)

kMD“Bil(m)+ I(m)
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S, (m)=B QL= L(m)+ BLL(m)

Tv (m) = kVC*AIZ(m) + 14(m)
with
k4= cos (B (h— d)) /€. and
cos (/3)(3,)/1)
sin ( B2 (h—d))
Y sn(AQ)

AppPENDIX 11
Amplitude Coefficients
(1) o M7

E, o) E,

F —gw,qu

APV =—4, sin (,BXV w)+A’ cos (B,,-w)

B =y [B sin ( B,,-w) + B, - cos (,Bxﬂ-w)]

EQP= weOgEm

m
FP= ‘%Fm

AP =weo| A, cos ( B, w)+ A, -sin (B, W) ]
9= 8 (4 )55 Gy

AP =A,sin ( B,,w) + 4, cos (B, W)

BY =wpo| — B,sin (B, w)— B, cos (B, w)]
AfO =weo[ 4, cos (B, w)= Ay sin (B,w) ]
B® =B -cos (S, w)+B,sin ( f,, ).

In Case of an Electric Wall at x="»b

GO = —n—glsin (BL(w—b))G,,
HD=— g‘*’ﬂo sin ( B (w—b))H,,
GP = gweo cos ( B (w—b))G,,

H®= %ﬂ-cos (B (w—b))H,.

In Case of a Magnetic Wall at x=»5b

(1

2

(3]

[4]

15

(6]

{71

G = —cos (BR(w—1b))G,,
HP = %w,u cos ( B9 (w—b))H,,
GP=— %weo sin (B (w—b))G,,

HP = n;ﬂ sin ( B (w—b))H,,.

REFERENCES

J. E. Goell, “A circular-harmonic computer analysis of rectangular
dielectric waveguides,” Bell Syst. Tech. J., vol. 48, pp. 2133-2160,
Sept. 1969.

E. A. J. Marcatili, “Dielectric rectangular waveguide and directional
coupler for integrated optics,” Bell Syst. Tech. J., vol. 48, pp.
2071-2102, Sept. 1969.

W. Schlosser and H. G. Unger, “Partially filled waveguides and
surface waveguides of rectangular cross section,” Advances of Mi-
crowaves, vol. 1. New York: Academic Press, 1966, pp. 319-387.
R. M. Knox and P. P. Toulios, “Integrated circuits for the millime-
ter through optical frequency range,” in Proc. Symp. Submillimeter
Waves, Polytechnic Press of Polytechnic Institute of Brooklyn,
Brooklyn, NY, 1970, pp. 497-516.

W. V. McLevige, T. Itoh, and R. Mittra, “New waveguide structure
for millimeter wave and optical integrated circuits,” IEEE Trans.
Microwave Theory Tech., vol. MTT-23, pp. 788-794, Oct. 1975.

K. Solbach, “The fabrication of dielectric image lines using casting
resins and the properties of the lines in the millimeter-wave range,”
IEEE Trans. Microwave Theory Tech., vol. MTT-24, pp. 879887,
Nov. 1976.

H.-G. Unger, Elektromagnetische Wellen I. Braunschweig,
Germany: Friedr. Vieweg & Sohn, 1967.




